3 Decision Tree Learning

- Decision tree representation
- ID3 learning algorithm
- Entropy, Information gain
- Overfitting
Decision Tree for *PlayTennis*

```
Decision Tree for PlayTennis

Outlook
  /  
Sunny Overcast
  /   
Humidity Yes
     /  
High No
    /  
Yes

Rain
  /  
Strong Weak
  /   
Wind
  /  
Yes
```
A Tree to Predict C-Section Risk

- Learned from medical records of 1000 women
- Negative examples are C-sections

```
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
  | Previous_Csection = 0: [767+,81-] .90+ .10-
  |   | Primiparous = 0: [399+,13-] .97+ .03-
  |   | Primiparous = 1: [368+,68-] .84+ .16-
  |   |   | Fetal_Distress = 0: [334+,47-] .88+ .12-
  |   |   | Birth_Weight < 3349: [201+,10.6-] .95+ .05-
  |   |   | Birth_Weight >= 3349: [133+,36.4-] .78+ .22-
  |   | Fetal_Distress = 1: [34+,21-] .62+ .38-
  | Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
```
Decision Trees

- Decision tree representation:
 - Each internal node tests an attribute
 - Each branch corresponds to attribute value
 - Each leaf node assigns a classification

- How would we represent:
 - \land, \lor, XOR
 - $(A \land B) \lor (C \land \neg D \land E)$
 - M of N
When to Consider Decision Trees

- Instances describable by attribute–value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

Examples:
 - Equipment or medical diagnosis
 - Credit risk analysis
 - Modeling calendar scheduling preferences
Top-Down Induction of Decision Trees

- **Main loop:**
 - $A \leftarrow$ the “best” decision attribute for next *node*
 - Assign A as decision attribute for *node*
 - For each value of A, create new descendant of *node*
 - Sort training examples to leaf nodes
 - If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

- **Which attribute is best?**

![Decision Tree Diagram]

- $A1 = _?$
- $A2 = _?$

[29+, 35-]
[21+, 5-]
[18+, 33-]
[11+, 2-]
S is a sample of training examples

p_{\oplus} is the proportion of positive examples in S

p_{\ominus} is the proportion of negative examples in S

Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$
Entropy

- $Entropy(S) = \text{expected number of bits needed to encode class } (\oplus \text{ or } \ominus) \text{ of randomly drawn member of } S \text{ (under the optimal, shortest-length code)}$

- Information theory: optimal length code assigns $-\log_2 p$ bits to message having probability p.

- So, expected number of bits to encode \oplus or \ominus of random member of S:

 $$p_\oplus(-\log_2 p_\oplus) + p_\ominus(-\log_2 p_\ominus)$$

- $Entropy(S) \equiv -p_\oplus \log_2 p_\oplus - p_\ominus \log_2 p_\ominus$
Information Gain

- $Gain(S, A) = \text{expected reduction in entropy due to sorting on } A$

- $Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$
Training Examples

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Selecting the Next Attribute

Which attribute is the best classifier?

Gain (S, Humidity)
= 940 - (7/14).985 - (7/14).592
= .151

Gain (S, Wind)
= 940 - (8/14).811 - (6/14)1.0
= .048
Partialy learned tree

\[\text{Outlook} \]

\[\text{Sunny} \quad \text{Overcast} \quad \text{Rain} \]

\[\{D1, D2, D8, D9, D11\} \quad \{D3, D7, D12, D13\} \quad \{D4, D5, D6, D10, D14\} \]

\[[9+, 5−] \quad [2+, 3−] \quad [4+, 0−] \]

\[\text{Yes} \]

\[? \]

Which attribute should be tested here?

\(S_{\text{sunny}} = \{D1, D2, D8, D9, D11\} \)

\[
\text{Gain} (S_{\text{sunny}}, \text{Humidity}) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970
\]

\[
\text{Gain} (S_{\text{sunny}}, \text{Temperature}) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570
\]

\[
\text{Gain} (S_{\text{sunny}}, \text{Wind}) = .970 - (2/5) 1.0 - (3/5) .918 = .019
\]
Hypothesis Space Search by ID3

3 Decision Trees
Hypothesis Space Search by ID3

- Hypothesis space is complete!
 - Target function surely in there...
- Outputs a single hypothesis (which one?)
 - Can’t play 20 questions...
- No backtracking
 - Local minima...
- Statistically-based search choices
 - Robust to noisy data...
- Inductive bias: approx “prefer shortest tree”
Inductive Bias in ID3

- Note H is the power set of instances X
- → Unbiased?
- Not really...
- Preference for short trees, and for those with high information gain attributes near the root
- Bias is a *preference* for some hypotheses, rather than a *restriction* of hypothesis space H
- Occam’s razor: prefer the shortest hypothesis that fits the data
Occam’s Razor

- Why prefer short hypotheses?
- Argument in favor:
 - Fewer short hyps. than long hyps.
 - a short hyp that fits data unlikely to be coincidence
 - a long hyp that fits data might be coincidence
- Argument opposed:
 - There are many ways to define small sets of hyps
 - e.g., all trees with a prime number of nodes that use attributes beginning with “Z”
 - What’s so special about small sets based on size of hypothesis??
Overfitting in Decision Trees

▶ Consider adding noisy training example #15:

\[\text{Sunny, Hot, Normal, Strong, PlayTennis} = \text{No} \]

▶ What effect on earlier tree?
Overfitting

- Consider error of hypothesis h over
 - training data: $\text{error}_{\text{train}}(h)$
 - entire distribution \mathcal{D} of data: $\text{error}_{\mathcal{D}}(h)$

- Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

 \[
 \text{error}_{\text{train}}(h) < \text{error}_{\text{train}}(h')
 \]

 and

 \[
 \text{error}_{\mathcal{D}}(h) > \text{error}_{\mathcal{D}}(h')
 \]

- Why can overfitting occur?
 - Noise in the training data.
 - Coincidental regularities in the training data.
Overfitting in Decision Tree Learning

![Graph showing accuracy vs. size of tree](image)

On training data
On test data

3 Decision Trees
Avoiding Overfitting

▶ How can we avoid overfitting?
 ▶ Stop growing when data split is not statistically significant.
 ▶ Grow full tree, then post-prune.

▶ How to select “best” tree:
 ▶ Measure performance over training data.
 ▶ Measure performance over separate validation data set.
 ▶ MDL: minimize $size(tree) + size(misclassifications(tree))$.
Reduced-Error Pruning

▶ Split data into training and validation set.
▶ Do until further pruning is harmful:
 ▶ Evaluate impact on validation set of pruning each possible node.
 ▶ Greedily remove the one that most improves validation set accuracy.
▶ Produces smallest version of most accurate subtree.
▶ What if data is limited?
Effect of Reduced-Error Pruning

On training data
On test data
On test data (during pruning)

Accuracy vs. Size of tree (number of nodes)
Rule Post-Pruning

- Learn decision tree until it fits training data as well as possible.
- Convert tree to equivalent set of rules.
- Prune each rule by removing preconditions independently of others.
- Sort final rules into desired sequence for use.
Rule Post-Pruning

- Learn decision tree until it fits training data as well as possible.
- Convert tree to equivalent set of rules.
- Prune each rule by removing preconditions independently of others.
- Sort final rules into desired sequence for use.

Advantages:

- Decision nodes are considered in context.
- There is no need to reorganize the tree.
- Rules are often easier for people to understand.
Converting A Tree to Rules

IF \((Outlook = Sunny) \land (Humidity = High)\)
THEN \(PlayTennis = No\)

IF \((Outlook = Sunny) \land (Humidity = Normal)\)
THEN \(PlayTennis = Yes\)

...
Continuous Valued Attributes

- Target attribute remains discrete, but other attribute may be continuous.
- Create a discrete attribute to test continuous.

 - $Temperature = 82.5$
 - $(Temperature > c) = t, f$

<table>
<thead>
<tr>
<th>Temperature:</th>
<th>40</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlayTennis:</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

- Two candidates: $c = 54$ or $c = 85$.
- Select the one with higher information gain.

- Alternative: split continuous attribute into multiple intervals.
Attributes with Many Values

Problem:

- If attribute has many values, Gain will select it.
- Imagine using Date = Jun 3 1996 as attribute.

One approach: use GainRatio instead:

\[
\text{GainRatio}(S, A) \equiv \frac{\text{Gain}(S, A)}{\text{SplitInformation}(S, A)},
\]

where

\[
\text{SplitInformation}(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|},
\]

where \(S_i\) is subset of \(S\) for which \(A\) has value \(v_i\)

Denominator must be different from 0!
Unknown Attribute Values

▶ What if some examples missing values of A?
▶ Use training example anyway, sort through tree:
 ▶ If node n tests A, assign most common value of A among other examples sorted to node n.
 ▶ Assign most common value of A among other examples with same target value.
 ▶ Assign probability p_i to each possible value v_i of A.
 ▶ Assign fraction p_i of example to each descendant in tree.
▶ Classify new examples in same fashion.
Attributes with Costs

- Consider
 - medical diagnosis, *BloodTest* has cost $150
 - robotics, *Width_from_1ft* has cost 23 sec.

- How to learn a consistent tree with low expected cost?

- One approach: replace gain by

 - Tan and Schlimmer (1990)
 \[
 \frac{\text{Gain}^2(S, A)}{\text{Cost}(A)}.
 \]

 - Nunez (1988)
 \[
 \frac{2^{\text{Gain}(S, A)} - 1}{(\text{Cost}(A) + 1)^w}
 \]

 where \(w \in [0, 1] \) determines importance of cost
Summary

- Learning of discrete-valued functions.
- Trees are grown by selecting greedily the next best attribute.
- Searches the complete hypothesis space.
- Inductive bias includes a preference for smaller trees.
- Overfitting is a problem.
- Many extensions.